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Abstract
We consider the two-dimensional uniformly frustrated XY model in the limit
of small frustration, which is equivalent to an XY system, for instance a
Josephson junction array in a weak uniform magnetic field applied along a
direction orthogonal to the lattice. We show that the uniform frustration
(equivalently, the magnetic field) destabilizes the line of fixed points which
characterize the critical behavior of the XY model for T � TKT, where TKT is the
Kosterlitz–Thouless transition temperature: the system is paramagnetic at any
temperature for sufficiently small frustration. We predict the critical behavior
of the correlation length and of gauge-invariant magnetic susceptibilities as the
frustration goes to zero. These predictions are fully confirmed by the numerical
simulations.

PACS numbers: 74.81.Fa, 64.60.Fr, 05.10.Ln

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The uniformly frustrated two-dimensional (2D) XY model is defined by the lattice Hamiltonian

H = −
∑
〈xy〉

Re ψxUxyψ
∗
y = −

∑
〈xy〉

cos(θx − θy + Axy), (1)

where ψx ≡ eiθx and Uxy ≡ eiAxy . 2D arrays of coupled Josephson junctions in a magnetic
field are interesting physical realizations of this model [1]. In this case, the sum C(Pnm) of
the variables Axy along the links of an elementary plaquette Pnm,

C(Pnm) ≡ A(n,m),(n+1,m) + A(n+1,m),(n+1,m+1) − A(n,m+1),(n+1,m+1) − A(n,m),(n,m+1), (2)
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is related to the flux of an external magnetic field applied along an orthogonal direction:
C(Pnm) = a2B/�0, where a is the lattice spacing, B is the magnetic field and 2�0 = hc/e.
Hamiltonian (1) depends on Axy through the phases Uxy and thus the relevant physical quantity
is the product of the phases around a plaquette, i.e., U(P ) ≡ exp[iC(P )]. If U(P ) is not 1, H
is frustrated. In this paper we assume U(P ) to be independent of the chosen plaquette, i.e.,
that

U(P ) = e2π if , (3)

with 0 � f � 1, independent of P. Using the invariance of the Hamiltonian under the
transformation ψx → ψ∗

x , it is not restrictive to take f in the interval 0 � f � 1/2. We will
work in a finite lattice of size L2 with periodic boundary conditions. Therefore, we have∏

P

U(P ) = 1, (4)

where the product is extended over all lattice plaquettes. This implies that f L2 must be an
integer.

Hamiltonian (1) is invariant under the local gauge transformations

ψx → Vxψx, Uxy → V ∗
x UxyVy, (5)

where Vx is a phase, |Vx | = 1. Physical observables must be gauge invariant. For such
observables, the choice of the fields Axy is irrelevant: only the value of f is relevant. In
a finite volume, this statement is strictly true only if free boundary conditions are taken. If
one considers periodic boundary conditions, one must also specify the value of exp

(
i
∑

Axy

)
along two non-trivial lattice paths that wind around the lattice (they are sometimes called
Polyakov loops). For instance, one must also fix P1(m) = exp

(
i
∑

n A(n,m),(n+1,m)

)
and

P2(m) = exp
(
i
∑

n A(m,n),(m,n+1)

)
for some fixed values of m. If we require the absence of

magnetic circulation along these non-trivial paths, we must have P1(m) = P2(m) = 1 for any
m. On a finite lattice of size L2, this condition can be satisfied only if f L is an integer, a
condition that will always be satisfied in the numerical simulations that we shall present.

The critical behavior of uniformly frustrated XY models changes dramatically with f .
For f = 0 the model corresponds to the standard XY model, which is not frustrated. It shows
a Kosterlitz–Thouless transition at TKT (on a square lattice [2] TKT = 0.892 94(8)), where
the correlation length ξ diverges as ln ξ ∼ (T − TKT)−1/2 for T � TKT; the low-temperature
phase, T < TKT, is characterized by quasi long-range order—correlation functions decay
algebraically—associated with a line of fixed points. In the case of maximal frustration,
i.e. for f = 1/2, the system undergoes two very close continuous transitions (their critical
temperature is T ≈ 0.45 on the square lattice), respectively in the Ising and Kosterlitz–
Thouless universality classes, see e.g., [3, 4] and references therein. The critical behavior
for other values of f is even more complex, see e.g., [5–13] for experiments. There may
be several transitions, whose nature is not clear in most of the cases. Even the structure of
the ground state is only partially understood [14–16]. For f = 1/n, where n is an integer
number, if Tc is the critical temperature where the paramagnetic phase ends, Tc decreases with
increasing n; for example, [9] Tc � 0.22 for f = 1/3 and [8] Tc � 0.05, 0.03 for n = 30 and
56, respectively. These studies suggest that Tc vanishes [7, 8] as Tc ∼ 1/n when n → ∞.
The critical behavior for irrational values of f is even less clear, see e.g., [11, 12]. In this
case, there are some indications that the system is paramagnetic for any T and that a glassy
transition occurs at zero temperature [12].

The above-mentioned works studied the critical behavior as a function of the temperature
T, while keeping the uniform frustration f fixed. In this paper we investigate a different critical
limit, i.e., we consider the limit f → 0 at fixed T in the region T � TKT. In other words,
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we investigate the effect of a small uniform frustration on the low-temperature XY critical
behavior. We show that a uniform frustration is a relevant perturbation at the fixed points that
occur in the XY model for T � TKT. As soon as f is non-vanishing, the correlation length
becomes finite and the system is paramagnetic.

The critical behavior for small values of f can be understood within the Coulomb-gas
picture [17]. If one considers the Villain Hamiltonian corresponding to (1), one can write the
partition function as

ZVillain =
∫ ∏

x

dθx e−βH = ZSW

∑
{nx }

exp(2πβHCG), (6)

where [17] ZSW is the spin-wave contribution and HCG is the Coulomb-gas Hamiltonian:

HCG = 1

2

∑
ij

(ni − f )V (ri − rj )(nj − f ), (7)

where ni is an integer (vorticity) defined at the site i of the dual lattice and V (r) is the
lattice Coulomb potential. In (6) the sum over nx is restricted to configurations satisfying
the neutrality condition [17]

∑
i (ni − f ) = 0. For f = 0 and T < TKT this representation

allows one to show that correlation functions decay algebraically. The two-point correlation
function is the product of a spin-wave contribution, which decays algebraically, and of a
vortex contribution. For T < TKT charged vortices are strictly bound to form dipoles and
the corresponding correlation function also decays algebraically [18]. For f > 0 the picture
changes. For small f , in the temperature interval f TKT < T < TKT, there are unbounded
particles with n = 0 and charge −f , which screen the Coulomb interaction among the vortices
of charge n − f ≈ n, n 	= 0. The Debye screening length can be easily computed. Consider
a vortex of charge 1, surrounded by particles of charge −f . Since there is one charge −f for
each lattice site, complete screening is achieved when these charges occupy a circle of area
A, such that Af = 1. Thus, the screening length ξ should be proportional to f −1/2. In this
picture, for f → 0, the system is equivalent to a dilute gas (the density is proportional to f 1/2)
of neutral particles interacting by means of a screened Coulomb potential Vsc(r). We can
thus perform a standard virial expansion to predict that the vortex–vortex correlation function
is proportional to Vsc(r), hence decays exponentially with a rate controlled by the Debye
screening length. This argument indicates that, for sufficiently small f and any T < TKT, the
system is paramagnetic with a correlation length that scales as

ξ ∼ f −1/2, (8)

for f → 0. It is worth mentioning that also an analysis of the ground-state configurations
shows the emergence of a typical length scale, associated with the ground-state modulation,
which scales as f −1/2 [19].

Equation (8) can also be predicted by simple dimensional arguments. For a given value of
f and T, consider a real-space renormalization-group (RG) transformation. Eliminate lattice
sites obtaining a lattice with a link length that is twice that of the original lattice. In lattice
units we have ξ ′ = ξ/2, where we use a prime for quantities that refer to the decimated lattice.
Analogously, we obtain f ′ = 4f for the frustration parameter. It follows ξ ′f ′1/2 = ξf 1/2.
This quantity is therefore constant under RG transformations, i.e., ξf 1/2 = c. Under the RG
transformation, the Hamiltonian parameters also change. In particular, the transformation
induces a temperature change T → T ′. However, for small f , one is close to the XY

line of fixed points and thus we expect T ′ ≈ T . Thus, the condition ξf 1/2 = c holds at
(approximately) fixed temperature and f → 0. Therefore, it implies (8).

In this paper, we wish to verify numerically (8) and study the critical behavior of gauge-
invariant susceptibilities (they will be defined in the following section). Note that, in a sense,
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at fixed T � TKT, the magnetic flux f plays the role of the reduced temperature, with an
associated correlation length exponent ν = 1/2.

The paper is organized as follows. In section 2 we define gauge-invariant correlation
functions, the associated susceptibilities and correlation lengths, and discuss the expected
critical behavior. In section 3 we present some Monte Carlo (MC) results that fully confirm
the theoretical predictions.

2. Definitions and general scaling properties

In order to check prediction (8), we consider two different gauge-invariant correlation
functions:

Gsq(x; y) ≡ |〈ψxψ
∗
y 〉|2, G�(x; y) ≡ 〈Re ψxU [�x;y]ψ∗

y 〉. (9)

Here �x;y is a path that connects sites x and y and U [�x;y] is a product of phases associated
with the links that belong to �x;y . More precisely, if a link 〈wz〉 belongs to the path, w and z

have coordinates w = (w1, w2) and z = (z1, z2), such that z1 − w1 � 0 and z2 − w2 � 0, we
define Rwz = Uwz if point w occurs before point z while moving along the path; otherwise,
we set Rwz = U ∗

wz. The phase U [�x;y] is the product of all the phases Rwz associated with the
links belonging to the path.

Definition (9) of G�(x; y) depends on a family of paths � = {�x;y}. We assume this
family to be translationally invariant: the path �x;y is obtained by rigidly translating the path
�0;y−x that connects the origin to y − x. In this case, the correlation function G�(x; y) is
uniquely defined by specifying the paths from the origin to any point x.

Because of the presence of the gauge field, the Hamiltonian is not translationally invariant,
nor it is symmetric under the symmetry transformations of the lattice. Nonetheless, there are
generalized symmetries of the Hamiltonian that also involve gauge transformations. For
instance, if Lf is an integer, the Hamiltonian is invariant under the generalized translations

ψ ′
(n,m) = ψ(n+1,m)U

∗
(n,m),(n+1,m) e−2π imf ,

ψ ′
(n,m) = ψ(n,m+1)U

∗
(n,m),(n,m+1) e2π inf .

(10)

Gauge-invariant correlation functions are invariant under these transformations. This implies
that they do not depend on x and y separately, but only on the difference y −x. This invariance
can be understood intuitively if one notes that gauge-invariant quantities should only depend
on the value of the flux through a plaquette, i.e., U(P ), and of the Polyakov correlations P1(m)

and P2(m). In our model U(P ) is independent of P and, if Lf is an integer, P1(m) and P2(m)

do not depend on m: hence, a translation invariance holds.
Analogously, the Hamiltonian is invariant under generalized transformations that involve

lattice symmetries and gauge transformations. For instance, in infinite volume the Hamiltonian
is invariant under the generalized reflection transformations

ψ ′
(n,m) = ψ∗

(−n,m)K
∗
m

|n|−1∏
k=0

[U(k,m),(k+1,m)U
∗
(−k−1,m),(−k,m)], (11)

where

Km =

⎧⎪⎨
⎪⎩

∏m−1
k=0 U 2

(0,k),(0,k+1) for m � 1,

1 for m = 0,∏−m−1
k=0 U ∗2

(0,k+m),(0,k+m+1) for m � −1.

(12)

Under these symmetries Gsq(x; y) transforms covariantly. If T is a lattice symmetry,
Gsq(x; y) = Gsq(T x; Ty). These relations do not hold in general for G�(x; y) since a
lattice symmetry also changes the path family.
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Given G�(x; y) and Gsq(x; y), we define the corresponding susceptibilities

χ� ≡
∑

y

G�(x; y), χsq ≡
∑

y

Gsq(x; y), (13)

where sums are extended over all lattice points y. Because of the translational invariance, χsq

and χ� do not depend on the point x. Of course, χ� depends on the family of paths � = {�x;y}.
Then, for any gauge-invariant correlation function G(x; y) we define on a finite lattice of
size L2

F ≡
∑

y≡(y1,y2)

cos[qmin(y1 − x1)]G(x; y) (14)

where x ≡ (x1, x2) and qmin ≡ 2π/L. The correlation length is defined by4

ξ 2 ≡ 1

4 sin2(qmin/2)

χ − F

F
. (15)

Note that an equally good definition of F is

F ≡
∑

y≡(y1,y2)

cos[qmin(y2 − x2)]G(x; y). (16)

For the correlation function Gsq(x; y), one can show that these two definitions of F are
equivalent, but this is not generically the case of G�(x; y), since this quantity is not symmetric
under lattice transformations. In the following we use definition (14) for F.

In the introduction we derived a prediction for the correlation length, ξ ∼ f −1/2. We wish
now to obtain a similar result for the susceptibilities. In order to predict their scaling behavior,
let us note that, for f = 0 and T � TKT, 〈ψ0ψ

∗
x 〉 decays algebraically, i.e., 〈ψ0ψ

∗
x 〉 ∼ x−η(T ).

The critical exponent η(T ) depends on T and varies between η(0) = 0 and η(TKT) = 1/4.
For f 	= 0, it is natural to assume that

χ� ∼
∫

x<ξ

d2x x−η(T ) ∼ ξ 2−η(T ) ∼ f −1+η(T )/2,

χsq ∼
∫

x<ξ

d2x x−2η(T ) ∼ ξ 2−2η(T ) ∼ f −1+η(T ).

(17)

In particular, these equations predict χ� ∼ f −7/8 and χsq ∼ f −3/4 at T = TKT.
The check of the previous prediction for χsq does not present conceptual difficulties.

Instead, when considering χ� , one should keep in mind that this quantity depends on a path
family. Thus, there is a natural question that should be considered first. Given a path family
�(f1) for a given value f = f1 of the frustration parameter, we must specify which path family
�(f2) must be considered for f = f2 	= f1. Only if �(f2) is chosen appropriately, does the
relation

χ�(f1)

χ�(f2)

≈
(

f1

f2

)−1+η(T )/2

(18)

hold for f1, f2 → 0. A naive choice would be �(f1) = �(f2). As we now discuss, this choice
is not correct: different path families should be chosen for different values of f .

To clarify this issue, let us imagine we are working in the continuum. For each f , let us
consider a family of paths �(f ) = {

�
(f )

x;y
}
. Because of the translation invariance, we can limit

ourselves to paths going from the origin to any point y. These paths can be parametrized in

4 Note that this definition of ξ corresponds to ξ2 = ∑
y(y2

1/2)G(0; y)/χ in the infinite-volume limit.

5
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y1
y2

f1

2y1

2y2

f2=f1/4

Figure 1. On the left, we report two paths connecting the origin to y1 and y2, respectively. On the
right, we report the corresponding paths connecting the origin to 2y1 and 2y2. The figure on the
left corresponds to a frustration parameter f = f1, that on the right to f = f2 = f1/4.

terms of a function X(f )(t; y) such that X(f )(0; y) = 0 for all y,X(f )(1; y) = y. The path
from the origin to y is given by

x = X(f )(t; y) t ∈ [0, 1]. (19)

To determine the relation between �(f1) and �(f2), one should remember that x/ξ should be
kept fixed in the critical limit. Thus, we expect the path family to be invariant only if all
lengths are expressed in terms of ξ . In other words, set x̄ = x/ξf , ȳ = y/ξf and rewrite (19)
as

x̄ = 1

ξf

X(f )(t; ȳξf ) t ∈ [0, 1], (20)

where ξf is the correlation length for the system with frustration parameter f . The natural
requirement is therefore that the right-hand side be independent of f , that is

1

ξf2

X(f2)(t; ȳξf2) = 1

ξf1

X(f1)(t; ȳξf1). (21)

Since we expect ξf ∼ f −1/2, we obtain the relation

X(f2)(t; ry) = rX(f1)(t; y), r =
(

f1

f2

)1/2

. (22)

In figure 1 we report an example corresponding to f1 = 4f2. The paths from the origin to y1

and y2 which belong to �(f1) completely fix the paths to 2y1 and 2y2 belonging to �(f2). Of
course, on the lattice it is impossible to ensure (22) exactly. However, note that the relevant
scale is fixed by the correlation length and thus, violations at the level of the lattice spacing
are irrelevant in the critical limit.

In the following we shall consider the path families �n ≡ {�n;0;x}, which are specified by a
non-negative integer n. They are defined as follows (see figure 2). The path �n;0;x connecting
the origin to the point x ≡ (x1, x2) consists of three segments: the first one connects the
origin to (−n, 0); the second one goes from (−n, 0) to (−n, x2); the last one is horizontal,
from (−n, x2) to point x. We indicate with χn(f ) the corresponding susceptibilities and with
ξn(f ) the corresponding correlation lengths. These families of paths behave simply under
transformation (22). If we consider the path �n;0;x for f = f1, mapping (22) implies that,
for f = f2, one should consider the path �rn;0;rx between the origin and the point rx. This
implies that, if we take the path family �n for f = f1, we must consider �rn for f = f2. As a
consequence, χn and ξn scale correctly only if we consider the limit n → ∞, f → 0 at fixed
nf 1/2. Thus, we predict the scaling behaviors

χn = f −1+η(T )/2Fχ(nf 1/2), ξn = f −1/2Fξ (nf
1/2), (23)

6
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x

n

Figure 2. The path connecting the origin to the point x which belongs to the path family �n.

where Fχ(x) and Fξ (x) are appropriate scaling functions. In the following section, we verify
these predictions.

3. Numerical results

We perform simulations for various values of f = 1/m,m integer and T in the interval
T � TKT, where TKT is the critical temperature of the XY model, TKT = 0.89294(8) [2].
We consider finite lattices of size L2, where L is a multiple of 1/f , and periodic boundary
conditions for the spins. Since we perform MC simulations in a gapped phase, boundary
conditions are expected to be irrelevant in the thermodynamic limit. Cluster algorithms
cannot be used in the presence of frustration and thus we use an overrelaxed algorithm, which
consists in performing microcanonical and Metropolis updates. Predictions (8) and (17) hold
in the thermodynamic limit, i.e., for sufficiently large values of the ratio L/ξ , where finite-
size effects are negligible. We find numerically that size effects are much smaller than our
statistical errors for Lf � 3.

In the simulations we choose the gauge

Axy = 0 if y = x + 1̂,

Axy = 2πf x1 if y = x + 2̂,
(24)

which is consistent with (3) and P1(m) = P2(m) = 1, as long as L is an integer multiple of 1/f .
With this gauge choice the computation of the susceptibilities χn and of the corresponding
correlation lengths ξn is quite simple. Indeed, U [�n;x;y] = 1 for any y if the first component of
x is n, i.e., if x = (n,m),m is arbitrary. Thus, if we choose x = (n,m) in definition (13), we
can compute χn without taking into account the phases Uxy . In practice, we have determined
χn by using

χn = 1

L

∑
m

∑
y

〈Re ψ(n,m)ψ
∗
y 〉. (25)

An analogous expression holds for the correlation lengths.
In figures 3 and 4 we plot the correlation lengths ξn and the susceptibilities χn at T = TKT

for several values of f and n. In this case η(T ) = 1/4 so that χn should scale as f −7/8. It is
easy to show that

χn = χn+1/f , χn = χ1/f −n, (26)

7
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210

 n f
 1/2

0.0

0.5

ξ n
f1/

2

f  = 1/20
f  = 1/25
f  = 1/30

Figure 3. Scaling plot for the correlation length ξn at TKT. For each f we report the data satisfying
n � 1/(2f ).

210

 n f
 1/2

0.0

0.5

1.0

χ n
f7/

8

f=1/20
f=1/40
f=1/80
f=1/100
f=1/120

Figure 4. Scaling plot for the susceptibilities χn at TKT. For each f we report the data satisfying
n � 1/(2f ).

so that in (23) one must restrict oneself to data satisfying 0 � n � 1/(2f ). The results
reported in the figures show the scaling behavior (23) quite precisely, confirming the theoretical
arguments. Note that the scaling function Fχ(x) apparently goes to zero as x increases. This
behavior will be confirmed below by the analysis of a non-gauge-invariant correlation function.

Good agreement is also found at T < TKT. We check the behavior of χn=0 (in this case, the
same path family can be used for all values of f ) up to T = 0.2. At T = 0.2, 0.3, 0.4, 0.5, 0.8,
a fit of χ0 to af −1+η(T )/2 gives η = 0.042(8), 0.050(6), 0.079(6), 0.098(7), 0.171(3). These
results are in substantial agreement with the leading spin-wave contribution η = T/(2π), and
the MC estimates [20] η = 0.036(3), 0.052(5), 0.074(6), 0.100(8), 0.19(2). For example, in
figure 5 we show the MC results for χ0 at T = 0.4, together with the result of the fit. The data
show a clear power-law behavior in perfect agreement with (17).

8
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3.0 3.5 4.0 4.5 5.0 5.5
 ln 1/f

3.0

3.5

4.0

4.5

5.0

5.5

ln χ0

Figure 5. Critical behavior of χ0 versus 1/f at T = 0.4. The line is the results of a fit to χ = af −ε ,
which gives ε = 0.961(3), corresponding to η(T = 0.4) = 0.079(6).

We also investigated the critical behavior of χsq, which is expected to scale as f −3/4.
For 1/f = 40, 60, 80, we obtain χsq = 9.933(7), 13.630(23), 17.06(4), respectively. These
results are fully consistent with the theoretical prediction. Indeed, the product f 3/4χsq clearly
converges to a constant as f → 0 (corrections are expected to be proportional to 1/ln(1/f ),
as in the XY model at TKT): we have f 3/4χsq = 0.6245(5), 0.6322(11), 0.6378(15) for the
same values of f .

Finally, we mention that correlation functions which are not gauge invariant show a
different behavior. For example, one may consider the susceptibility χw associated with the
two-point function 〈Re ψxψ

∗
y 〉 in the gauge (25):

χw = 1

L2

∑
x,y

〈Re ψxψ
∗
y 〉. (27)

At TKT it shows a power-law behavior χw ∼ f −ε as well, but with a power ε ≈ 0.39, definitely
different from the value 0.875 of the gauge-invariant definition. This result can be derived
analytically. Indeed, we can rewrite

χw = 1

L

L−1∑
n=0

χn, (28)

where χn is defined in (25). Using the properties (26) of the susceptibilities χn, (28) can be
rewritten as

χw ≈ 2f

1/(2f )∑
n=0

χn. (29)

In this range of values of n, as is clear from figure 4, we can use the scaling behavior (23) and
write

χw ∼ f × f −7/8
∫ 1/(2f )

0
dnF(nf 1/2)

∼ f −3/8
∫ 1/(2f 1/2)

0
dx F(x) ∼ f −3/8

∫ ∞

0
dx F(x). (30)

9
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Figure 6. MC results for the non-gauge-invariant susceptibility χw and for the product f 3/8χw

versus ln 1/f at T = TKT.

Thus, provided that F(x) is integrable (we already noted that the MC data for χn are consistent
with F(x) → 0 as x → ∞), we predict χw ∼ f −3/8 = f −0.375, which is consistent with the
MC data (see figure 6).

Note that the critical behavior of χw depends on the chosen gauge. If we use the gauge

Axy = −πf x2 if y = x + 1̂,

Axy = πf x1 if y = x + 2̂,
(31)

the susceptibility χw does not diverge and approaches a constant as f → 0.
In conclusion, we have shown that a small amount of uniform frustration (equivalently, a

small uniform magnetic field) destabilizes the line of fixed points that occur in the XY model
for T � TKT. As soon as f is different from zero, the system becomes paramagnetic. The
critical behavior ξ ∼ f −1/2 can be predicted by simple Coulomb-gas and scaling arguments.
Our numerical simulations fully confirm this prediction. Also the scaling behavior (17) for
the magnetic susceptibilities is fully consistent with the numerical results.
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[18] José J V, Kadanoff L P, Kirkpatrick S and Nelson D R 1977 Phys. Rev. B 16 1217
[19] Nussinov Z 2001 Preprint cond-mat/0107339
[20] Berche B 2003 J. Phys. A: Math. Gen. 36 586

11

http://dx.doi.org/10.1103/PhysRevB.32.7532
http://dx.doi.org/10.1103/PhysRevB.35.7109
http://dx.doi.org/10.1103/PhysRevLett.85.3484
http://dx.doi.org/10.1103/PhysRevLett.76.2989
http://dx.doi.org/10.1103/PhysRevLett.77.410
http://dx.doi.org/10.1103/PhysRevLett.51.1999
http://dx.doi.org/10.1103/PhysRevB.48.3309
http://dx.doi.org/10.1103/PhysRevLett.88.025701
http://dx.doi.org/10.1103/PhysRevB.18.4789
http://dx.doi.org/10.1103/PhysRevB.16.1217
http://www.arxiv.org/abs/cond-mat/0107339
http://dx.doi.org/10.1088/0305-4470/36/3/301

	1. Introduction
	2. Definitions and general scaling properties
	3. Numerical results
	References

